Feasibility and repeatability of localized 31P‐MRS four‐angle saturation transfer (FAST) of the human gastrocnemius muscle using a surface coil at 7 T
نویسندگان
چکیده
Phosphorus ((31) P) MRS, combined with saturation transfer (ST), provides non-invasive insight into muscle energy metabolism. However, even at 7 T, the standard ST method with T1 (app) measured by inversion recovery takes about 10 min, making it impractical for dynamic examinations. An alternative method, i.e. four-angle saturation transfer (FAST), can shorten the examination time. The aim of this study was to test the feasibility, repeatability, and possible time resolution of the localized FAST technique measurement on an ultra-high-field MR system, to accelerate the measurement of both Pi -to-ATP and PCr-to-ATP reaction rates in the human gastrocnemius muscle and to test the feasibility of using the FAST method for dynamic measurements. We measured the exchange rates and metabolic fluxes in the gastrocnemius muscle of eight healthy subjects at 7 T with the depth-resolved surface coil MRS (DRESS)-localized FAST method. For comparison, a standard ST localized method was also used. The measurement time for the localized FAST experiment was 3.5 min compared with the 10 min for the standard localized ST experiment. In addition, in five healthy volunteers, Pi -to-ATP and PCr-to-ATP metabolic fluxes were measured in the gastrocnemius muscle at rest and during plantar flexion by the DRESS-localized FAST method. The repeatability of PCr-to-ATP and Pi -to-ATP exchange rate constants, determined by the slab-selective localized FAST method at 7 T, is high, as the coefficients of variation remained below 20%, and the results of the exchange rates measured with the FAST method are comparable to those measured with standard ST. During physical activity, the PCr-to-ATP metabolic flux decreased (from FCK = 8.21 ± 1.15 mM s(-1) to FCK = 3.86 ± 1.38 mM s(-1) ) and the Pi -to-ATP flux increased (from FATP = 0.43 ± 0.14 mM s(-1) to FATP = 0.74 ± 0.13 mM s(-1) ). In conclusion, we could demonstrate that measurements in the gastrocnemius muscle are feasible at rest and are short enough to be used during exercise with the DRESS-localized FAST method at 7 T.
منابع مشابه
Semi-LASER localized dynamic 31P magnetic resonance spectroscopy in exercising muscle at ultra-high magnetic field
Magnetic resonance spectroscopy (MRS) can benefit from increased signal-to-noise ratio (SNR) of high magnetic fields. In this work, the SNR gain of dynamic 31P MRS at 7 T was invested in temporal and spatial resolution. Using conventional slice selective excitation combined with localization by adiabatic selective refocusing (semi-LASER) with short echo time (TE = 23 ms), phosphocreatine quanti...
متن کاملMyocardial skeletal muscle signal spoiling using a crusher coil: a human cardiac phosphorus (31P) MR spectroscopic imaging study at 7 Tesla
Background P-MRS provides direct insights into myocardial energy supply (ATP, ADP, phosphocreatine (PCr) and inorganic phosphate). An initial study demonstrated that 7T cardiac P-MRS has 2.8x greater SNR than at 3T. However, the translation of more sophisticated P-MRS protocols to 7T is particularly challenged by increased RF heating of tissue at 7T. Chen and Ackerman introduced the surface spo...
متن کاملHuman Cardiac 31P-MR Spectroscopy at 3 Tesla Cannot Detect Failing Myocardial Energy Homeostasis during Exercise
Phosphorus-31 magnetic resonance spectroscopy (31P-MRS) is a unique non-invasive imaging modality for probing in vivo high-energy phosphate metabolism in the human heart. We investigated whether current 31P-MRS methodology would allow for clinical applications to detect exercise-induced changes in (patho-)physiological myocardial energy metabolism. Hereto, measurement variability and repeatabil...
متن کاملFour-angle saturation transfer (FAST) method for measuring creatine kinase reaction rates in vivo.
A new fast method of measuring kinetic reaction rates for two-site chemical exchange is described. The method employs saturation transfer magnetic resonance spectroscopy (MRS) and acquisition of only four spectra under partially saturated, high signal-to-noise ratio (SNR) conditions. In two acquisitions one of the exchanging species is saturated; the other two employ a control saturation. Each ...
متن کاملUsing a whole-body 31P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T
PURPOSE Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS) provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 29 شماره
صفحات -
تاریخ انتشار 2016